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(4) INTRODUCTION

The goal of the proposed, “Breast Cancer Screening Using Photonic Technology” research
project is to develop optical imaging techniques that make use of noninvasive near-infrared
(NIR) light for obtaining two-dimensional (2-D) transillumination, and three-dimensional (3-D)
tomographic images of cancerous lesions of human breast. The imaging method involves
illuminating the specimen with ultrashort NIR pulses of laser light and construction of images
using two approaches. The first, known as the shadowgram method, utilizes the image bearing
component of the forward-transmitted light to form direct shadow images. The second, referred
to as the three dimensional (3-D) inverse reconstruction method, makes use of the measured
transmitted, forward-scattered or backscattered light intensity profiles, known or estimated
optical properties of the sample, a model for light propagation through turbid media and a
sophisticated computer algorithm to construct images of the interior structure of the specimen.

We made significant advances in developing both of these approaches. What is even more
important, our spectroscopic imaging experiments with normal and cancerous human breast
tissues reveal useful differences in optical images and is indicative of the diagnostic ability of the
spectroscopic imaging method.

(5) BODY

The tasks performed and the progress made during the current reporting period may be
broadly grouped as follows:

5.1 Enhancement of the spectroscopic imaging arrangement,

5.2 Time-sliced and spectroscopic shadowgram imaging with excised human breast tissues

5.3 Analytic solution of Boltzmann Transport Equation, and

5.4 Development of the inverse image reconstruction method using backscattered light.

We will briefly outline our accomplishments in each of these areas, and refer to appended
publications (Appendices 1-4) for detailed description where applicable.

5.1 Enhancement of the Spectroscopic Imaging Arrangement

We have improved on the spectroscopic imaging arrangement that we assembled and used
during the first reporting period by replacing the old 128x128 pixels NIR area camera with a new
area camera equipped with a 320x240 pixels sensing element (Sensors Unlimited SU-320). The
new camera has improved the resolution of the images that we obtain significantly. This is an
extension of the Technical Objectives 2 and 3 (TO 2, 3).

5.2 Time-sliced and Spectroscopic Shadowgram Imaging of Excised Human Breast
Tissues

We have continued to pursue the time-sliced and spectroscopic shadowgram imaging of
excised normal and cancerous human breast tissues using the experimental arrangements
developed during the first reporting period (TO 5-7, Tasks 12, 14). The breast tissue specimens
with infiltrating ductal carcinoma, and infiltrating lobular carcinoma from patients of different
ages were obtained from our collaborators at the Memorial Sloan Kettering Cancer Center and
National Disease Research Interchange under an IRB approval at the City College of New York.

A very promising and interesting result of 2-D spectroscopic imaging experiment is the
wavelength-dependent difference in light transmission through the cancerous and normal tissues
(TO 5-7, Tasks 15). As a measure of this difference we monitored the ratio, R of light intensity
transmitted through the cancerous tissue to that through the corresponding normal tissue. We



found the value of R to be 1.5 for 1225 nm and 1.2 for 1300 nm, a significant difference, for a
breast tissue sample with poorly differentiated carcinoma, grade III, with sarcomatoid features.!
The results are detailed in Appendix 1. We observed similar wavelength-dependent variation in R
for breast tissue samples with ductal carcinoma, as well. We will pursue measurements involving
normal tissues and tissues with different types and stages of cancer to examine if R can be a
parameter whose values would be indicative of cancer.

The results of time-sliced 2-D imaging experiments are consistent with our earlier results®
that light transited through the cancerous tissues faster than through the normal tissue.
Consequently, images obtained with light in the earlier time slices highlighted the cancerous
tissues, while those obtained with light in the later time slices highlighted the normal tissues.
Time-sliced imaging can thus separate out normal and cancerous tissues in excised specimens.
Some of these results are also presented in Appendix 1.

5.3 Analytical Solution of Boltmann Transport Equation

Our theoretical endeavor (TO 4, Task 10; TO 8, task 18). has resulted in the derivation of
analytical solution of the elastic Boltzmann Transport Equation in an infinite uniform isotropic
medium with an arbitrary phase function.>* This new approach provides a more accurate and
exact description of photon transport through highly scattering media than the commonly used
diffusion approximation that fails to adequately account for ballistic and snake photons.” The
approach enables calculation of () the exact distribution in angle, and (b) the spatial cumulants
at any angle, exact up to an arbitrary high-order (dppendix 2). Terminating the cumulant
expansion at the second order, we have derived an analytlcal solution of the distribution function,
and density distribution (4dppendix 3).* These expressions show a clear picture of time evolution
of particle migration from ballistic to snake-like, then to diffusive regime. Use of these analytic
solutions will provide more sophisticated 3-D inverse image reconstruction schemes.

5.4 Development Inverse Image Reconstruction Method using Backscattered Light

We have made another major advance in developing a novel inverse image reconstruction
(IIR) method during this reporting period (TO 4, Tasks 8, 9; TO 8, Task 18). This new
approach uses backscattered photons from the scatterlng medium containing absorbing
inhomogeneities, and differes from our earlier method’ that used transmitted and forward
scattered photons. It introduces the concept of propagation of spatial Fourier component of the
scattered wave field inside the scattering medium, and then develops a new optical diffuse
imaging methodology based on that theory. The method is fast and capable of providing 3-D
image information. A test run using simulated data was able to reconstruct images of four
inhomogeneities located up to 2 cm below the surface of a human tissue-like semi-infinite
scattering medium using backscattered photons. The inverse reconstruction method using
backscattered light is detazled in the preprint of a paper presented here as Appendix 4. We will
pursue testing of this method® for inverse reconstruction of objects using experimental data, and
compare the results with that obtained using the reconstruction method that used transmitted
light.

(6) KEY RESEARCH ACCOMPLISHMENTS
e Obtained time-sliced 2-D transillumination images normal and cancerous tissues
wherein images recorded with earlier temporal slices of transmitted light highlighted



cancerous tissues while those recorded with later slices accentuated normal fibrous
tissues.

e Carried out spectroscopic imaging experiments and identified a ratio, R of light
intensity transmitted through the cancerous tissue to that through the corresponding
normal tissue show a wavelength dependent variation that has the potential to be used
as a useful parameter for cancer identification.

o Developed analytical solutions of the Boltzmann transport equation that enable a
more accurate description of the ballistic and snake components of light emerging
from a highly-scattering medium than that afforded by the diffusion approximation.

e Developed the theoretical framework and computer algorithm for inverse image
reconstruction scheme that would use backscattered light to provides fast, noise-
resistant 3-D images of objects at various depths inside a scattering medium.

(7) REPORTABLE OUTCOMES
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. S. K. Gayen, M. Alrubaiee, M. E. Zevallos and R. R. Alfano, “Temporally and spectrally
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. W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport

equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104,
3996 (2000).

W. Cai, M. Lax, and R. R. Alfano, “Cumulant solution of the elastic Boltzmann transport
equation in an infinite uniform medium,” Phys: Rev. E 61, 3871 (2000).

. M. Xu, M. Lax, and R. R. Alfano, “Time-resolved optical diffuse tomography,” J. Opt. Soc.
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Abstracts and Presentations
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gated and spectroscopic near-infrared imaging of lesions in human tissues,” Bull. Am.
Phys. Soc. 45, 958 (2000). Paper Y13 10 presented at the March Meeting of the American
Physical Society, 20-24 March 2000, Minneapolis, MN.

S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-sliced and spectroscopic two-
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(8) CONCLUSIONS

The work carried out during this reporting period affirms some of our earlier inferences and
leads to some new conclusions. First, time-sliced 2-D transillumination images recorded with
earlier temporal slices of transmitted light highlighted cancerous tissues while those recorded
with later slices accentuated normal fibrous tissues. Second, results of spectroscopic imaging
experiments lead to a ratio, R of light intensity transmitted through the cancerous tissue to that
has the potential to be used as a useful parameter for cancer identification. Third, analytical
solutions of the Boltzmann transport equation that we obtained enable a more accurate
description of the ballistic and snake components of light emerging from a highly-scattering
medium than that afforded by the diffusion approximation. Fourth, the theoretical formalism
and computer algorithm for inverse image reconstruction scheme using backscattered light
shows (with simulated data) the potential to provide fast 3-D images of objects at various depths
inside a scattering medium.

“So What Section”

The implication of the first conclusion is that time-sliced imaging offers the possibility of
highlighting cancerous lesions in human breast. The second conclusion points to the diagnostic
potential of optical imaging, that of being able to diagnose a tumor as it is being imaged. X-ray
mammography, most often used method, cannot diagnose cancer. The third and fourth
conclusions together present the possibility of developing robust 3-D inverse image
reconstruction formalisms, that in addition to being applicable for optical mammography, will be
useful for imaging objects inside scattering media, such as, cloud, fog, smoke, and murky water.
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Appendix 1
Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH,
Edited by A. Gandjebache, Optical Society of America (to be published), p.142

Temporally and spectrally resolved optical imaging of normal and cancerous
human breast tissues

S. K. Gayen, M. Alrubaiee, M. E. Zevallos and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, New York State Center for Photonic Materials and
Applications, Departments of Physics and Electrical Engineering, The City College of the City University
of New York, 138th Street at Convent Avenue, New York, NY 10031
gayen(@scisun.sci.ccny.cuny.edu, alfano@scisun.sci.ccny.cuny.edu

Abstract: Time-sliced and spectroscopic imaging arrangements were used to obtain two-
dimensional (2-D) transillumination images of a composite in vitro human breast tissue sample
comprising cancerous and normal fibrous tissues, adipose tissues, and a lymph node. Time-sliced
imaging approach used 800-nm, approximately 130-fs duration, 1 kHz repetition-rate pulses from
a Ti:sapphire laser system to illuminate the sample, and a gated imaging system that provided a
variable-position, ~80 ps-duration electronic gate to record time-sliced 2-D images. Images
recorded with earlier temporal slices (approximately, first 100 ps) of the transmitted light
highlighted the lymph node and cancerous tissues, while the later slices (later than 300 ps)
accentuated the adipose and normal tissues. Spectroscopic imaging arrangement made use of
1225 - 1300 nm light from a chromium-doped forsterite laser for sample illumination, a Fourier
space gate and a polarization gate to sort out a fraction of the image-bearing photons, and an
InGaAs area camera for recording 2-D images. Marked enhancement of image contrast between
the adipose tissue and other tissues in the specimen was observed when the wavelength of
imaging light was near resonant with the 1203-nm optical absorption resonance of the adipose
tissue. Wavelength-dependent differences in relative light transmission through the normal and
cancerous tissues were observed.

OCIS codes: (170.3880) Medical and biological imaging; (170.6920) time-resolved imaging;
(290.7050) scattering, turbid media; (170.6510) spectroscopy, tissue diagnostics; (170.3660) light
propagation in tissues; (999.999) Optical mammography; (999.999) near-infrared absorption
spectroscopy of tissues; (999.999) spectroscopic imaging; (999.999) time-sliced imaging.

Introduction

Optical mammography, imaging of the interior structure of human breast with light, is an active area of
optical biomedical imaging research.[1-4] Development of optical breast imaging modalities is of interest
for several reasons. Optical imaging methods are noninvasive as no ionizing radiation is involved. Use of
different wavelengths of light has the potential to provide diagnostic information. In contrast with x-ray
mammography, light-based methods are as apt to image dense breast of a younger patient as that of an
older patient. What is even more important, inverse image reconstruction methods using time-resolved or
frequency-domain optical measurements may provide three-dimensional (3-D) tomographic breast
images.[5-7] The ability to generate ultrashort pulses and color are two major attributes of light that may
be exploited to develop an imaging modality with diagnostic ability.

In this article, we present the results of time-sliced[7] and spectroscopic[8] 2-D transillumination
imaging measurements on excised human female breast tissue specimens comprising normal and
cancerous tissues. Time-sliced imaging makes use of different temporal slices of the transmitted light
to form 2-D images following the illumination of the sample with ultrashort near-infrared (NIR) pulses
of light. The thrust of the spectroscopic imaging experiment is to examine if a spectroscopic difference




may be used to enhance image contrast, distinguish between different types of tissues in a specimen, and
obtain diagnostic information.

Methods and Materials

The time-sliced imaging arrangement used 800-nm, approximately 130-fs duration, 1 kHz repetition-rate
pulses from a Ti:sapphire laser and amplifier system[9] for sample illumination, and an ultrafast gated
intensified camera system (UGICS) for recording two-dimensional images using picosecond-duration
slices of light transmitted through the sample. The UGICS comprised a compact time-gated image
intensifier unit fiber-optically coupled to a charge-coupled device (CCD) camera. It provided a
minimum gate width of approximately 80 ps whose temporal position could be varied in 25-ps steps
over a 20-ns range. The average beam power used in the experiment was approximately 200 mW. The
beam was expanded by a beam expander, and a 3-cm diameter central part of it was selected out using
an aperture to illuminate the sample. The time-sliced image was recorded by the CCD camera and
displayed on a computer.

The experimental arrangement for near-infrared (NIR) spectroscopic imaging made use of 1210-
1300 nm continuous-wave mode-locked output of a Cr** :forsterite laser to illuminate the sample. A
Fourier space gate[10] in conjunction with a polarization gate[11] selected out a fraction of the less-
scattered image-bearing photons from the strong background of the image-blurring diffuse photons. A
50 mm focal-length camera lens placed on the optical axis at a distance of 50 mm from the aperture in
the Fourier gate collected and collimated the low-spatial-frequency light filtered by the aperture and
directed it to the 128x128 pixels sensing element of an InGaAs NIR area camera. The average optical
power of the incident beam was maintained at approximately 35 mW for all the wavelengths used in the
imaging experiment using appropriate neutral density filters. The laser beam was linearly polarized
along the horizontal direction.

The composite excised breast tissue sample used in the experiments reported in this article was
assembled from tissues obtained following the modified radical mastectomy of a 30-year-old patient. It
comprised a lymph node (LN) with surrounding tissues, a piece of adipose (A) tissue, and a piece with
normal (N) and cancerous (C) fibrous tissue. Each of the pieces was approximately 5 mm thick, and
was pressed into a 5-mm thick quartz cell to ensure uniform sample thickness and good optical contact
between the adjacent pieces. According to an accompanying surgical pathology report, the cancer was a
poorly differentiated carcinoma, grade III with sarcomatoid features. Figure 1(a) shows a photograph of
the exit face (the side that faces the camera in the experimental arrangements mentioned above) of the
sample wherein the locations of different types of tissues in the composite sample are tentatively
labeled. The tissues were made available to us by National Disease Research Interchange under an IRB
approval from the City College of New York.

Results
Time-sliced Imaging

Time-sliced transillumination images of the sample for gate positions of 100 ps and 350 ps are displayed
in Figs. 1(b) and 1(c), respectively. The zero position was taken to be the time of arrival of the light
pulse through a 5-mm thick quartz cell filled with water. The spatial intensity profiles of the images in
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Figure 1.(a) A photograph of the exit face (the side that faces the camera in the experimental arrangements) of the composite
breast tissue sample. LN, lymph node; A, adipose tissue; N, normal fibrous tissue; C, cancerous tissue. Time-sliced
transillumination images of the sample for gate delays of (b) 100 ps, and (c) 350 ps. Spatial profile of the integrated
intensity distribution along a horizontal area of 6 pixel vertical width around the dashed white line that passes through the
normal fibrous tissue (dashed line), or the cancerous tissue (solid line) for a gate delay of (d) 100 ps, and (e) 350 ps.

Fig. 1(b) and Fig. 1(c) integrated over two 6-pixel wide horizontal areas around the white dashed lines
are presented in Figs. 1(d) and 1(e), respectively. The two areas were chosen such that one included the
normal fibrous tissue in the upper right part of the sample while the other included the cancerous tissue
in the lower right part to enable close comparison. The time-sliced 100-ps image clearly highlights the
lymph node, adipose, normal fibrous, and cancerous tissue regions. The contrast is the highest between
the lymph node that appears the brightest and the adipose tissue that appears dark in the image. The
spatial intensity distributions of the 100-ps image, displayed in Fig. 1(d), show the highest peak in
intensity values in the lymph-node region and a marked trough in the adipose tissue region indicating
much higher light transmission through the lymph node and much lower transmission through the
adipose tissue region at early time. More interesting is the contrast between the cancerous and normal
tissues in the 100-ps image. As seen in the right side of the image and the spatial intensity profiles of
Fig. 1(d), light transmission through the cancerous tissue is significantly higher than that through the
normal tissue.

A markedly different situation is observed in the 350-ps image of Fig. 1(c) and the corresponding
spatial intensity profiles of Fig. 1(e). The adipose tissue region appears the brightest, and the spatial
intensity profile peaks in the adipose tissue region indicating much higher light transmission through the




adipose tissue compared to transmission through other tissues in the sample at this later time. What is
even more noteworthy, the difference in light transmission through the normal and cancerous regions
that appeared so prominent in the profiles of Fig. 1(d) is not appreciable at this late time. It is reflected
by the close overlapping of the two profiles in the regions of the normal and cancerous tissues in the
profiles of Fig. 1(e). At intermediate times (not shown in figures) relative light transmission through the
lymph node and cancerous tissues decreased while that through adipose and normal fibrous tissues
increased with time. Summarizing the time-dependent transit of light, we find that the light transits
fastest through the lymph node, followed by that through cancerous fibrous tissue, normal fibrous tissue,
and the adipose tissue. Lower scattering or/and higher absorption of light by the lymph node and
cancerous tissues may account for the observed temporal behavior. Since there is no known absorption
of 800-nm light by breast tissues, we attribute these time-dependent differences in the relative light
transmission through different types of human breast tissues to the differences in the light scattering
characteristics of these tissues.

These results demonstrate that time-sliced imaging can highlight different types of tissues in a
sample. What is even more important, it can highlight normal fibrous tissues from poorly differentiated
carcinoma (grade III) with sarcomatoid features. It should be noted that more pronounced difference in
light scattering characteristics between normal fibrous tissues and infiltrating ductal carcinoma was
observed[12] than that observed in this study between normal fibrous tissues and poorly differentiated
carcinoma (grade III) with sarcomatoid features. This in turn indicates that light transport characteristics
will vary between tissues with different types of carcinoma, as well as between normal and cancerous
tissues.

Spectroscopic Imaging

A spectroscopic difference between different types of tissues in a specimen is expected to provide some
distinguishable signature in a transillumination image. In order to test if this signature may be realized in
practice, we obtained images of the sample with 1225-nm light that is near-resonant with the adipose
tissue optical absorption resonance around 1203 nm,[13] as well as, with light of wavelengths away
from the resonance. Figures 2(a) and 2(b) show a 'near-resonant image' recorded with 1225-nm light,
and a typical 'nonresonant image' recorded with 1300-nm light, respectively. Figures 2(c) and 2(d)
display the corresponding spatial intensity profiles. The solid line in each of these figures shows the
profile integrated over a 6-pixel wide area around the long dashed line that runs the entire length of the
corresponding image and includes the cancerous tissue region in the lower right part of the image. The
dashed curve superimposed on the solid curve shows the profile integrated over a 6-pixel wide t normal
fibrous tissue area enclosed by the smaller box in the corresponding image. The solid and the dashed
curves in the right side of the profiles thus enable comparison of light transport characteristics through
normal and cancerous tissues in the specimen.

The salient features of the spectroscopic images and corresponding profiles are: (a) the adipose
tissues appear much darker (less light transmission) than other tissues in the near-resonant 1225-nm
image as compared to that in the off-resonance 1300-nm image; (b) cancerous tissues appear brighter
(higher light transmission) than the normal tissues in both the images; (c) while the overall light
transmission through the normal region remains approximately at the same level, that through the
cancerous region is significantly higher at 1225 nm than at 1300 nm; (d) transmission through the lymph
node exhibits a wavelength-dependent variation as well, being higher at 1225 nm than at 1300 nm. The
change in image contrast was the maximum for the adipose tissue as the wavelength of imaging light
was changed from 1225 to 1300 nm. Adipose tissue region appeared as a much deeper trough in the
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Figure 2. Spectroscopic 2-D transillumination image of the breast tissue sample described in the text for light of wavelength (a) 1225 nm,
and (b) 1300 nm. Corresponding spatial profiles are shown in (c) and (d), respectively. Spatial profiles are the integrated intensity
distribution along a 6-pixel wide horizontal area around the white dashed line covering the entire length of the sample including the
cancerous tissue region (solid line in the profiles) and that around the small dashed line denoting the normal tissue region (broken line in
the profiles).

spatial intensity profile of the 1225-nm image compared to that for the 1300-nm image. For a more
quantitative description of the observed behavior, we monitored the image contrast, C(4) = (Ir -1;)/(Ir
+14), where 1 4(4) is the optimal intensity value at wavelength A on the spatial profile of the image at the
adipose tissue location, and /() is the corresponding intensity in the immediate fibrous tissue region.
Value of contrast at 1225 nm is 0.27 and 0.10 at 1300 nm. As the laser output was tuned away from
1225 nm to off-resonance wavelengths, the contrast between the adipose and fibrous regions in the
images decreased from that maximum value of 0.27 towards 0.10. These results clearly demonstrate
that an appreciable spectroscopic difference may significantly enhance the contrast between different
types of breast tissues in a transillumination image, and is consistent with our previous results with
adipose and fibrous human breast tissues.|[8]

Even more promising and interesting is the wavelength-dependent difference in light
transmission through the cancerous and normal tissues. As a measure of this difference we may monitor
the ratio, R of light intensity transmitted through the cancerous tissue to that through the corresponding
normal tissue. Taking the averaged intensity values[14] around the middle of the normal and cancerous
tissues (Pixel # 110 in figures 2(c) and 2(d)), we obtain the value of R to be 1.5 for 1225 nm and 1.2 for
1300 nm, a significant difference. We observed similar wavelength-dependent variation in R for ductal
carcinoma and normal breast tissue samples as well. More measurements involving normal tissues and
tissues with different types and stages of cancer are needed to examine if R can be a parameter whose
values would be indicative of cancer.

In summary, the spectroscopic and time-sliced imaging methods show tissue selectivity. A
combined spectroscopic and time-sliced imaging approach has the potential to provide more information
even than the x-ray techniques.




Acknowledgements

We acknowledge J. Evans for technical help. The work is supported in part by the New York State
Science and Technology Foundation, NASA IRA Program, USAMMRC, and DOE.

References and Notes

1.

2.

10.

11.

12.
13.

14.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721-
730 (1929).
E. Gratton, W. W. Mantulin, M. J. vande Ven, J. B. Fishkin, M. B. Maris, and B. Chance, "A novel
approach to laser tomography," Bioimaging, 1, pp. 40-46, 1993.
G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg
and P. van der Zeect (editors), Medical Optical Tomography: Functional Imaging and Monitoring, Vol. 1S
11, SPIE Institute Series, (SPIE, Bellingham, Washington, 1993).
L. Wang, P.P. Ho, G. Liu, G. Zhang, and R.R. Alfano, “Ballistic 2-D imaging through scattering walls
using an ultrafast optical Kerr Gate”, Science 253, pp. 769-771, 1991.
For a recent review of the inverse reconstruction methods, see S. R. Arridge and J. C. Hebden, “Optical
imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841-853 (1997).
M. A. O'Leary, D. A. Boas, B. Chance and A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax and R. R. Alfano, “Optical tomographic
image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237-4246
(1999).
S. K. Gayen, M. E. Zevallos, M. Alrubaiee, and R. R. Alfano, “Near-infrared laser spectroscopic imaging: a
step towards diagnostic optical imaging of human tissues,” Laser Life Sci. 8, 187-198 (1999).
Q. Fu, F. Seier, S. K. Gayen and R. R. Alfano, “High-average-power kilohertz-repetition-rate sub-100-fs
Ti:sapphire amplifier system,” Opt. Lett. 22, 712-714 (1997).

J. J. Dolne, K. M. Yoo, F. Liu and R. R. Alfano, “IR Fourier space gate and absorption imaging through
random media,” Laser Life Sci. 6, 131-141 (1994).
S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical
polarization,” Opt. Lett. 21, 161-163 (1996).
S. K. Gayen and R. R. Alfano, “Sensing lesions in tissues with light,” Opt. Express 4, 475-480 (1999).
F. A. Marks, "Optical determination of the hemoglobin oxygenation state of breast biopsies and human
breast cancer xenografts in nude mice," in Proceedings of Physiological Monitoring and Early Detection
Diagnostic Methods, Thomas S. Mang and Abraham Katzir (eds.), SPIE 1641, Bellingham, Washington,
pp. 227-237, 1992.
A 5-point smoothed average of intensity values around Pixel #110 was used to reduce the effect of noise in
determining the ratio.




3996

Appendix 2

J. Phys. Chem. B 2000, 104, 3996—4000

Analytical Solution of the Elastic Boltzmann Transport Equation in an Infinite Uniform
Medium Using Cumulant Expansion’

W. Cai,* M. Lax, and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, New York State Center of Advanced Technology for Ultrafast
Photonic Materials and Applications, Department of Physics, The City College and Graduate Center of City
University of New York, New York, New York 10031

Received: December 20, 1999

We study the analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite
uniform isotropic medium with an arbitrary phase function. We calculate (1) the exact distribution in angle,
(2) the spatial cumulants at any angle, exact up to an arbitrary high order n. At the second order, n = 2, an
analytical, hence extremely useful combined distribution in position and angle, is obtained as a function of
time. This distribution is Gaussian in position, but not in angle. The average center and spread of the half-
width are exact. By the central limit theorem the complete distribution approaches this Gaussian distribution
as the number of collisions (or time) increases. The center of this distribution advances in time, and an ellipsoidal
contour that grows and changes shape provides a clear picture of the time evolution of the particle migration
from near ballistic, through snake-like, and into the final diffusive regime. This second-order cumulant
approximation also provides the correct ballistic limit. Algebraic expressions for the nth order cumulants are
provided. The number of terms grows rapidly with n, but our expressives are recursive and easily automated.

I. Introduction

Search for an analytical solution of the time-dependent elastic
Bolizmann transport equation has lasted for many years.!=3
Besides being considered as a classical problem in fundamental
research in statistical dynamics, a novel approach to an analytical
solution of this equation may have applications in a broad variety
of fields. To our knowledge, an exact solution, even in an infinite
uniform medium, is available only for isotropic scattering case,
given by E. H. Hauge,* in the form of a Fourier transform in
space and Laplace transform in time. Based on the angular
moment expansion with cut-off to certain order, the Boltzmann
transport equation is transferred to a series of moment equations.
In the lowest order, a diffusion equation is derived and its
analytical solution in an infinite uniform medium is obtained
for anisotropic scattering cases. This analytical solution has been
broadly applied in many applications. For example, the solution
of inverse problems in optical tomography, such as the location
of a tumor in a woman’s breast from the scattering of light
pulses, requires the inversion of a weight matrix® obtained by
convoluting two Green’s functions of the forward scattering
problem. The analytical solution of the diffusion equation has
provided the nceded Green’s function. A similar procedure can
be applicd to other problems, such as using a laser to monitor
cloud distributions, to detect objects inside a cloud, or the use
of low-frequency sound to detect oil-bearing layers deep under
water. The diffusion approximation fails at early times when
the particle distribution is still highly anisotropic. The solutions
of the diffusion equation or the telegrapher’s equation do not
produce the correct ballistic limit of particle propagation.6
Numerical approaches, including the Monte Carlo method, are
the main tools in solving the elastic Boltzmann equation;
however, detailed solution of a five-dimensional Boltzmann

¥ Part of the special issued “Harvey Scher Festschrift”.
* Corresponding author.

transport equation using a predominately numerical approach
leads to prohibitive CPU times.

In this paper, we seek an analytical solution of the elastic
Boltzmann transport equation in an infinite uniform medium.
We assume that the phase function, P(s, so), depends only on
the scattering angle: P(s, so) = P(s*sq), where the velocity v =
vs, s is a unit vector of direction, and v is the (constant) speed
in the medium. Under this assumption, we can handle an
arbitrary phase function. We obtain the exact angular distribution
as a function of time. Based on this solution, we use a cumulant
expansion of the particle distribution, I(r, s, ), and derive exact
spatial cumulants up to an arbitrary high order at any angle
and time. A cut-off at second order yields a simple analytical
expressions for I(r, s, 1), as a function of position r, angle s,
and time ¢, and the particle density distribution, N(r, f), as a
function of position r and time r. These spatial Gaussian
distributions have the exact first cumulant (the position of center
of the distribution) and the exact second cumulant (the half-
width of spread of the distribution). After many scatiering events
have taken place, the law of large numbers (the central limit
theorem) guarantees that the spatial Gaussian distribution that
we calculate will become accurate in detail, sincc the higher
cumulants become relatively small. At early times, the spread
of the distribution is narrow, hence, the spatial distribution
function can bc claimed quantitatively accurate for many
applications, in the sense that it has the correct mean position
and the correct half-width of spread as a function of time.
Measurement of the higher order cumulants could require
measuring instruments of extreme resolution.

The remainder of this paper is organized as follows. Section
II describes the derivation of formula: (1) obtaining an exact
solution of the distribution in angle, (2) obtaining an exact
formal solution in position and angle, (3) using the cumulant
expansion to calculate the exact analytical expressions of
cumulants up to an arbitrary high order, (4) describing the
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calculation of the particle distribution function using a spatial
Fourier transform. Section III discusses using a cut-off at second
order to produce explicit expressions of the distribution function
and the density distribution. A brief discussion and summary
then follows in Section IV. In the Appendix, we derive analytical
formulas for evaluating integrals in cq 12.

I1. Derivation of Cumulants to an Arbitrary High Order

The clastic Boltzmann kinetic cquation of particles, with
magnitude of velocity v, for the distribution function I(r, s, 1)
as a function of time ¢, position r, and dircction s, in an infinite
uniform medium, from a point pulse light source, é(r — rg) O(s
— sp) 6(1 — 0), is given by3

ol(r, s, )/ot + vs:V I(r,s, ) + u I(r,s, 1) =

ﬂSfP(s, sH{(r,s’, 1) — I(r, s, Nds" +
O(r —ry) O(s — s5) 0(t — 0) (1)

where us is the scattering rate, p, is the absorption rate, and
P(s’, s) is the phase function, normalized to f ds” P(s’, s) = 1.
When the phase function depends only on the scaitering angle
in an isotropic medium, we can expand the phase function in
Legendre polynomials with constant coefficients,

1
PGs,s") =;;;a,1°,<s-s') )

We first study the dynamics of the distribution in direction
space, F(s, sq, ), on a spherical surface of radius 1, which is
equivalent to the velocity space in the elastic scattering case.
The kinetic equation for F(s, so, #) can be obtained by integrating
eq 1 over the whole spatial space, r. The spatial independence
of us, #a, and P(s, ') retains translation invariance. Thus the
integral of eq 1 obeys

AF (s, sy, 1)/0t + u F(s, sg, 1) + uJF(s, s, 1) —
SPGs, ) F(s', 50, 1)ds’) = 6(s — 5) ¢t = 0) (3)

In contrast to eq 1, if we expand F(s, sp, f) in spherical
harmonics, its components do not couple with each other.
Therefore, it is easy to obtain the exact solution of eq 3:7

21+ 1
F(s, s, t)=exp(—/zat)z py exp(—gt)P(s'sy)
!

20+ 1
= exp(—,)Y, p exp(—g) D Yim(®)Vin(se) (@)
1 m

where g = u (1 — ai/(21 + 1)]. Two special values of g are go
= 0, which follows from the normalization of P(s, s’) and g, =

v/l, where 1, is the transport mean free path, defined by I =
/(1 — c0s0)], where cosf is the average of s*s’ with P(s, s”)
as weight. In eq 4, Y;(s) are spherical harmonics. Equation 4
scrves as the exact Green’s function of particle propagation in
velocity space. Since in an infinite uniform medium this function
is independent of the source position, ro, requirements for a
Green’s function are satisfied, especially, a Chapman—Kol-
mogorov condition is obeyed: f ds'F(s”,s’,t — ) F(s',s, { —
10) = F(s”, s, t — tp). In fact, in an infinite uniform medium,
this propagator determines all particle migration behavior,
including its spatial distribution, because displacement is an
integration of velocity over time. The distribution function I(r,
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s, 1) (the sourcc is located at rp = 0) is given by

I(r, s, 1) = (8(r — v [(s(!)dr") 6(s() — s)) (5)

where {...) means the ensemble average in the velocity space.
The first ¢ function imposes that the displacement, r — 0, is
given by the path integral. The second 6 function assures the
correct final value of direction. Equation S is an exact formal
solution of eq 1, but can not be evaluated directly. We make a
Fourier transform for the first -function in eq 5, then make a
cumulant expansion,® and obtain

I(r, s, 1) = F(s, sy, )—— f dk cxp{lk r+
@)’

oo(_.
2—-——2 Zk ki (fodt,... [ TTs, (8,).. -l(t1)1>c}
(©6)

where T denotes time-ordered multiplication.? In eq 6, index ¢
denotes cumulant, which is defined in many statistics text-
books, !0 as (A). = (A), (A2). = {A2) — (AXA), and a general
expression relating (A™) and (A™)., which is given by:

1{@\™ 1 (@™ 1 Aan\™
wy=m 3 OO LA

m, mz,...ml 1 ! mn! n!

o(m—m; ~2my— ... — nm, — ...) (7)

Hence, if (A™) m = 1, 2, ... n have been calculated, (A™). m =
1, 2, ... n can be recursively obtained and conversely.!® In the
following, we derive the analytical expression for the ensemble
average (foQty ... fodty TTs;(tn) -.. s;,(01)]). Using a standard
time-dependent Green’s function approach, it is given by

(frdt,... 12, Tls; (1,)...5; (8] =
1 (L 2 @ 40D
oo t){ﬁ)dt" ... [dt, fas® fds®7V..
JasOF(s, s, 1 — t)sOFE™, ", 0, — 1, s

F(s(z), s, t,— tl)s}ll)F(s(l), Sp 1y — 0) + perm} (8)

where the word “perm” means all n! — 1 terms obtained by
permutation of {j;}, i = 1, ... n, from the first term. In eq §,
F(s®, st D ¢, — ;1) is given by eq 4. Since eq 4 is exact, eq
8 provides the exact nth moments of the distribution. In
Cartesian coordinates three components of s are [s;, sy, s,]. For
convenience in calculation, however, we will use the compo-
nents of s on the basis of spherical harmonics:

s = [$y, Sp» s_l= [Y“(S), Ylo(s), Y (8)] =
(—2"%sin 6 €', cos 6, +27 " sin 6 e ]

The recurrence relation of the spherical harmonics is given by
Y (S)Y,(s) = Zn+,m+,<s><l L m, jil+ i, m+ j) x
1,0, 0|l+t 0),i==%1 (9

where (I, I, m;, my|l, m) is the Clebsch—Gordan coefficients
of angular momentum theory,!! which are
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[(z~m)(1—m+1>]“2 [
21— 12!
o | [(mat m)e
(= iLmgillm+j) = [ 21— 1) ]
[@_@Uiﬁl_)]‘” _[
. @i-1)21

with the row index (from above) j = —1, 0, 1 and the column
index (from left) i = 1, 0, —1. The orthogonality relation of
spherical harmonics is given by

fdsyltm (S)Ylm(s) 2/ _7: léildmm (10)

Using cgs 9 and 10, integrals over ds® ... ds‘V in eq 8 can be
analytically performed. We obtain, when sp is sct along z, that

(‘/;dtn...j;;dtlnSj"(t,,)n-sj](t])]) =

1 1
— VY,
F(s, sg, ) z “):m:r’m](S).znl ; 4 8
n—k+1
t l](t) H(l - 2 ln m+1° 1, Z]m’.h('

n—k+1

I—ZZ_,,,H,ZJ Y (- Zz_,,,+,,1 0,0|

n—k

1= Y is iy O + perm (11)

m=1]
where iy = 1, f= 1, 2, ...n, and

Dl (=

i 'l

exp(—u,0){ ./;dt" j;’"dt",l... ./(‘;Zdt, expl—gt — t,)]
exp(—g-; (&, — t,._1)]“-CXP[“gr—le.‘n_Hl(tl -0} (12)

Note that all ensemble averages have been performed. Equation
12 involves integrals of exponential functions, which can be
analytically performed. An explicit expression for evaluating
integrals in eq 12 is presented in the Appendix. Equation 12
includes all related scattering and absorption parameters, g, [
=0, 1, ... and u,, and determines the time evolution dynamics.
The final particle direction, s, appears as argument of the
spherical harmonics Yim(s) in eq 11. Substituting eq 12 into eq
11, and using a standard cumulant procedure, the cumulants as
functions of angle s and time # up to an arbitrary nth order can
be analytically calculated. The final position, r, appears in eq
6, and its component can be expressed as |r| Yy;(#), j = 1,0,
—1, with |r| and £ are, separately, magnitude and unit direction
vector of r. Then, performing a numerical three-dimensional
inverse Fourier transform over k, an approximate distribution
function, I(r, s, ), accurate up to nth cumulant, is obtained.

XIL Gaussian Approximation of the Distribution Function

By a cut-off at the second cumulant, the integral over k in
eq 6 can be analytically performed, which directly leads to a
Gaussian spatial distribution displayed in eq 13. The exact first
cumulant provides the correct center position of the distribution.

(+m)l — m+ ]2

(d=my(l+m+ 1)]”2

Cai et al.

9

[(l+ m)(l + m+ 1)]'?

@1+ 2)21 + 3)
B [(l+m+ (I~ m+ D]

2(1+1)

[ m2 ]1/2
i+ nj -

(+1)Rl+3)
[(1— my(l — m+ D)2
@1+ 2)2 + 3) J

20+ 1)

The exact second cumulant provides the correct half-width of
spread of the distribution. Moreover, the central limit theorem
claims that as the number of collision events become large
enough, the resulting Gaussian distribution approaches detailed
accuracy beyond first two exact cumulants. At early time, spread
of the spatial distribution is narrow, possibly narrower than the
available detection instruments, hence, a spatial distribution with
cxact first and second cumulants may provide an accuratc
enough description of particle distribution for many applications.
For the reader’s convenience, the expressions below are given
in Cartesian coordinates with indices o, § = lx, ¥, z). Thesc
cxpressmn is obtained by use of an unitary transform sq = Ugys;
=1, 0, —1 from eq 11, (up to second order) which is based

on s5; = Yy(s), with

A
U=|y-17; 0 27
0 1 0

We set sp along the z direction and denote s as (6, ¢). Our
cumulant approximation to the particle distribution function is
given by
I(r,s, )=
F(s, sy, 1) 1 1, -1
—— " 55 Xp| — (B )og(r —1)e(r = 1) (13)
(47:)3'2 (deLB)”2 4 af « B

with the center of the packet (the first cumulant), denoted by
r¢, located at

o= GY AP(cos O+ 1) fig, ~ &) + A8 — 81-1)]
1
(14.1)

ff, = GZA,Pf”(cos 0) cos ¢lfig, — 81-1) — L& — &)
1
(14.2)

where G = v exp(—uat)/F(s, so, 1), A = (1/47) exp(—git), g1 is
defined after eq 4, and

Rg) = [exp(gn — 11/g

r is obtained by replacing cos ¢ in eq 14.2 by sin ¢. In eq 14,

P('")(cos @) is the associated Legendre function.
The square of the average spread width (the second cumulant)
is given by

(15)

Bop=VGA5— 12 (16)

where all the coefficients are functions of angle and time:

(-1 (d+ 1)l +2)
A, = AP(cosB) EV + E?
Z r -1 A+3

P a+1°
ED + EO (17.1)
21 21+ 3
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(I-1)
Z—AP,(cos 0)[ E“’
I+ 1)I+2 (-1 [+ 1){I+2)
0+ 1 @4()ﬁﬁ X W%
2+3 21 20+ 3

1 1 1
Y -A PP (cos 0) cos(2¢)[ EV + E” —
™ 2~ 1 2043

1
201

‘ 1
EY — Ef“’] (17.2)
20+3

where (+) corresponds to Ay, and (—) corresponds 1o Ay,

1 1
Ay=A,= ZEA,P;“(COS 0) sin(2¢)[—1z§” +
, _

: E? — : EY - —E“"] (17.3)
2043 21— 1 20+
| 2(1-1 y
A, Z—A P( )(cos ) cos ¢ E(
2(1 +2) . 1 £+ E(4)] (17.4)
20+3 20— 1 20+ -

A,, is obtained by replacing cos ¢ in eq 17.4 by sin ¢. In eq
17.1-17.4
D
E§ )= e —

82 —flgi— 8-MV(g-, —g-) (18.1)

E() e — &) — g — V(811 — 8112)  (18.2)

EY =g — &) — g — 8-y (18.3)

E( )= = [Rg — &1+1) — 1)/(8 — 8141) (18.4)

A cumulant approximation for the particle density distribution
is obtained from the exact expression N(r, ) = {&(r — v fs(t’)
dr’)). Using fds F(s, s’, t) = exp(—u,t), we have a Gaussian
shape

NG, 1) = —— ! RS,
0= (4xD, 1) 47D, vt xp 4D, vt

o +yH _
XP[ aD_vt ]eXP( #at) (19)

with a moving center located at
R, = v[1 — exp(—g,))/g, (20)

and the corresponding diffusion coefficients are given by

vt 38, —
- 3’{31 818~ [ P80
—i—memriwﬂmemn
8(8; — &) 287
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xx v “ - exp( I)] -
T 3e gl(& b

1

————1 —exp(—g,N] } (21.2
82(81_82)I exp( gz)]}( )

In contrast to egs 14 and 17, these results are independent of
gi for I > 2. Figure 1 shows the moving center of particles, R,
(cq 20), and the diffusion coefficients, D,, and D,, (egs 21), as
a function of time, where g, is calculated by Mie thcory of light
scattering!? assuming (for this figure) that the “uniform”
scattering medium consists of water droplets with /4 = 1 arc
uniformly distributed in air, with r the radius of the droplet, A
the wavelength of light, and the index of refraction m = 1.33.

Each distribution in eqs 13 and 19 describes a particle “cloud”
anisotropically spreading from a moving center, with time-
dependent diffusion coefficients. At early time 1 — 0, f(g) ~ ¢
+ 0@ incq 15, and EV ~ 212 + 0(83) for j = 1, 2, 3, 4 in eqgs
18. From cqs 14, 17, and 20—21, we sec that for the density
distribution, N(r, 1), and the dominant distribution function, that
is I(r, s, t) along s = sg, the center moves as vt sp and the Bgg
in eq 16 are proportional to £ at t — 0. A distribution function
I(r, s, t) for s not close to sy is small since F(s, s, {) ~ ¢, for
small ¢. The center moves at a certain direction with displace-
ment proportional to vt, and the Bgg in eq 16 are proportional
to 2 at ¢t — 0. These results present a clear picture of nearly
ballistic motion at ¢ — 0. With increase of time, the motion of
the center slows down, and the diffusion coefficients increase
from zero. This stage of particle migration is often called a
“snake-like mode”.

With further increase in time, the Ith Legendre component
in egs 4, 14, and 17, exponentially decays with a rate related to
g1 The detailed decay rate, g;, is determined by the shape of
the phase function. Generally speaking, the very high I/th
components decay in a rate of order of u, as long as its
Legendre coefficient a; distinctly smaller than 2/ + 1. Even in
the case that the phase function has a very sharp forward peak,
in which there are non-zero g, for very high /th rank, the g; are,
usually, much smaller than 2/ + 1. Therefore, for the distribution
function at time ¢ after the ballistic stage is over, a truncation
in summation of / is available.

At large times, the distribution function tends to become
isotropic. From eqs 19—21, the particle density, at ¢ > /v and
r > [, tends towards the conventional diffusion solution with
the diffusive coefficient l/3. Therefore, our solution quantita-
tively describes how particles migrate from nearly ballistic
motion to diffusive motion.

1

0.8 -

0.6 -
)
0.4 -

0.2

10 15 20
t (I,/v)
Figure 1. shows the moving center of a particle’s density function, R,

(eq 20), and the diffusion coefficients, D, and D,, (eqs 21), as functions
of time, 1.
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IV. Discussion

The cumulant expansion terminating at the second order is a
standard method in statistical mechanics,'® which neglects
cumulants higher than sccond order, and leads to a Gaussian
distribution. If we examine the spatial displacement after each
collision event as an independent random variable, Ar;, the total
displacement is 2. Ar; (i = 1,...N), with N the number of collision
cvents, which can be estimated by #u,. If we define Y =
(N)"M23 Ar;, the central limit theorem claims that if N is a large
number, then (Y /(Y2 ~ N'="2 n > 3. Therefore, the sum
of N variables will have an essentially Gaussian distribution.
Thercfore, after enough collision events happened, the distribu-
tions we have calculated are accurate in detail, not just having
the correct center and spread. At early time, the particle’s spread
is narrow, hence, in many applications the detailed shape is less
important than the correct position and correct narrow width of
the beam, because of the finite resolution of detection devices.

In case a more accurate distribution at early time is needed,
by use of egs 11 and 12 with its expression in Appendix, and
a standard cumulant procedure, the exact higher (up to arbitrary
nth) order cumulants can be analytically calculated. Then,
performing a numerical three-dimensional Fourier transform,
the particle distribution function accurate up to nth order
cumulant approximation can be obtained.

In summary, we present an analytical solution of the elastic
Boltzmann transport equation in an infinite uniform isotropic
medium. Using a cumulant expansion we can analytically
calculate cumulants up to an arbitrary high order. By terminating
at the second order, we have derived an analytical solution of
the distribution function, eq 13, and the density distribution, eq
19, with exact first cumulant (center of the distribution) and
exact second cumulant (the half-width of spread of the distribu-
tion). These expressions show a clear picture of time evolution
of particle migration from ballistic to snake-like, then to
diffusion regime.
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Appendix

In this Appendix, we derive an analytical expression of eq
12 to nth order. By defining

b= 8u-xymi_) ~ 8u-zppti L,y M= Lo (Al
eq 12 can be written as

D; ()= cxp(~ut)exp(—g)F™@®)  (A2)
with

FO0) = [ldt,e™ ["dt, e [ane (A3)

It is easy to directly calculate eq A3 for low n orders:

(A4.1)

e(b1+b2)t ebzl 1

FPp=—""__€e", 1 _
@ b, +b) bb, (b + by)b,

(A4.2)
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e(bl +by+by)

- +
by(b) + by))(b; + b, + b))  bby(b, + by)
bt

1

+
e(bz by

=

4
by + bbby (b + b, + by)(b, + by)by

(A4.3)

In cach step of integration, the difficulty is in determining the
constant term. In the following we prove that this term is given
by (=1)7[bu(by + by-1)...(by + bp—y + ... + by)]. Equation A3
can be written as

n) — 1y s bat ~1,.r
Fuy= [dre™ F (1) (A5)
Using integration by parts to eq A5, we obtain

FO) = bl[eb,.lp(n—l)(t) _ ﬂdr’ bt bn-i =2 oy (A6)

Recursively applying eq A6, we obtain
bat (butby-1)t

F(n)(t) — e_F(n-l)(t) e
b, by(b,+ b,

e(b,.+b,,-1+...+b,,_,‘)r

k
by(by + by_y)(by + by ..+ b,y

gOrtba-rt b _

b(b, + by_y)..(b, + b,y + ... + b))

F () + .+

F 5+

(-1

=D (A7)

Equation A7 provides formulas to recursively evaluate eq 12
up to nth order. Also, eq A7 produces the above mentioned
constant term. An explicit expression of eq 12 can then be
written as

ey exp(Zb,,_kﬂt)
k=0
D} (1) = exp(—u,t) exp(—g ) Y,

m=0

n

I

j=1

(A8)
with bp+1 = 0, and

m j
LP=YbjsmoaL™= Y b,j>m (A9)
k=j =m+1
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We consider an analytical solution of the time-dependent clastic Boltzmann transport cquation in an infinite
uniform isotropic medium with an arbitrary phase function. We obtain (1) the exact distribution in angle. (2)
the exact first and second spatial cumulants at any angle. and (3) an approximate combined distribution in
position and angle and a spatial distribution whose central position and half-width of spread are always exacl.
The resulting Gaussian distribution has a center that advances in time. and an ellipsoidal contour that grows
and changes shape providing a clear picture of the time cevolution of the particle migration from near ballistic,

through snakelike and into the final diffusive regime.

PACS number(s): 42.25.Fx. 42.25.Dd. 78.90.+1, 0.5.20.-y

I. INTRODUCTION

Scientists have tried for decades to develop exact or ac-
curate analytical approximate solutions of the Boltzmann
transport equation in various cases [1-3]. Any progress in
this direction is a contribution to fundamental research in
non-equilibrium statistical dynamics. An accurate analytical
approximation may have applications in a broad range of
fields, such as the atmosphere, medicine, and solid state
physics. Photon migration in a highly scattering turbid me-
dium is a good example. The solution of inverse problems in
optical tomography, such as the location of a tumor in a
woman’s breast from the scattering of light pulses, requires
the inversion of a weight matrix [4] obtained by convoluting
two Green’s functions of the forward scattering problem.
The analytical solution of the photon diffusive equation in an
infinite uniform medium has been broadly used as a back-
ground Green’s function [4]. By introducing ‘‘image
sources,”” the solution can be extended to semi-infinite,
slabs, and boxes geometry. The diffusion approximation fails
at early times when the photon distribution is highly aniso-
tropic. Solutions of the diffusion equation or the telegra-
pher’s equation do not produce the correct ballistic limit of
light propagation [5]. The Monte Carlo method can be used
to simulate photon migration at carly times: however, de-
tailed solution of a five-dimensional Boltzmann transport
cquation using a predominately numerical approach, with the
resolution good enough to check the analytical solution,
leads to prohibitive CPU times.

Recently, Polishchuk et al. [6] and Perclman er al. [7]
suggested different models of photon migration. They used
the path integral approach and the time-dependent Green's
function method to treat the photon migration problem. They
consider only multiple small-angle scattering. based on the
fact that the phasc function (angular distribution of the scat-
tering cross section) in many media has a very sharp forward
peak. A solution of the steady transport equation based on
the small angle approximation was also presented by Ishi-
maru [8]. However. it can be shown that the transport mean
freec path obtained by an average of 1—cos & over small
angles could be several times larger than that obtained by an
average over all angles. Thus, the small angle scattering ap-
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proximation is not quantitatively correct. Therefore, a proce-
dure permitting wide-angle scattering is essential.

In this paper, we present analytical expressions for the
distribution function and the density distribution of the solu-
tion of the elastic Boltzmann transport equation in an infinite
uniform medium. The phase function is assumed to depend
only on the scattering angle P(s,s9)=P(s-sp). Under this
assumption, the small angle approximation is avoided, and
an arbitrary phase function can be handled. Our solution for
the distribution in angle is exact, as are all first and second
spatial cumulants at any angle as functions of time. After
many scattering events have taken place, the central limit
theorem guarantees that the spatial Gaussian distribution cal-
culated will become accurate in detail, all cumulants higher
than the second approach small values relative to the ap-
proximate power of the second cumulant. At early times,
when the errors would be worst, the spatial distribution func-
tion at any angle is quantitatively accurate in the sense that it
has the exact mean position (the first cumulant) and the exact
and narrow half-width of spread (the second cumulant) as a
function of time. Since the inverse scattering problem is
done with instruments of finite resolution, in the presence of
noise, finer detail is lost, and the first two cumulants may
provide an adequate description of the scattered beam.

This paper is organized as follows. Section II describes
the derivation of the formula, which includes (1) obtaining
an exact solution of the distribution in angle, (2) obtaining an
exact formal solution in position and angle, (3) using the
cumulant approximation up to the second order that leads to
a Gaussian spatial distribution, (4) obtaining exact first and
sccond spatial cumnulants based on the exact angular distri-
bution. Section III provides the main results of the distribu-
tion function in position and angle. and the density distribu-
tion in position alone. Section IV makes a comparison of our
result for the special case of isotropic scattering with that of
the exact solution provided by Hauge [9]. A discussion of the
effectiveness of the cumulant approximation is presented in
Sec. V.

II. DERIVATION

Without loss of generality, we discuss the photon scatter-
ing problem with a given light speed in the medium ¢. Ap-

3871 © 2000 The American Physical Society
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plying our result to an another particle elastic scattering
problem, with the constant particle speed in the medium vis
straightforward. The photon distribution function /(r,s.t) as
a function of time 7. position r and direction s, in an infinite
uniform medium, from a point pulse light source &(r
— 1) 8(s—s0) 8(1—0) obeys the Boltzmann equation [3]

al(r,s,0)/dt+cs-V I(r,s,t)+ p I(r,s,t)

:““f P(s,s")[I(r,s",t)—I(r,s,t)]ds’
+ 8(r—ry) 8(s—sq) (1 —0), (1)

where w1, 1s the scattering rate, w, is the absorption rate, and
P(s',s) is thc phase function, normalized to fds’'P(s',s)
= [. When the phase function depends only on the scattering
angle in an isotropic medium, we can expand the latter in
Legendre polynomials

1
P(s,s")= e Z a,P(s-s'"), )

and regard a; as known, either from Mie theory [10], or a
preliminary experiment.

We first study the dynamics of the photon distribution in
the light direction space F(s,sq,?), on a spherical surface for
s of radius 1, which is equivalent to the velocity space in the
elastic scattering case. The kinetic equation for F(s,sy,?) can
be obtained by integrating Eq. (1) over the whole space r.
The spatial independence of pg, u,, and P(s,s’) retains
translation invariance. Thus the integral of Eq. (1) obeys

OF(s,sq,t)/dt+ w,F(s,s9,t)

+;LX{F(S,SO,I)— j P(s,s')F(s',s9,t)ds’
= &(s—s,) 8(1—0). (3)

Since the integral of the gradient term over all-space van-
ishes, in contrast to Eq. (1), if we expand F(s,sg,?) in spheri-
cal harmonics, its components do not couple with each other.
Therefore, it is easy to obtain the exact solution of Eq. (3)

[11]:

21+1
4

exp(—gt) P (s-sp)exp(— pot),
@)

where g,=u[1—a;/(21+1)]. Two special values of g, are
20=0, which follows from the normalization of P(s,s") and
g1=cll,, where I, is the transport mean free path, defined by
l,=cl[ (1 —cos )], wherc cos € is Lhe average of s-s” with
P(s.s") as weight. Equation (4) serves as the exact Green’s
function of light propagation in the velocity (or angular)
space. Since in an infinite uniform medium this function is
independent of the source position ry, requirements for a
Green’s function are satisfied, especially. a Chapman-
Kolmogorov  condition is  obeyed: [ds'F(s",s'.t
—t"YF(s'.s,t' —ty)=F(s".s.t—1y). In fact. in an infinite
uniform medium. this propagator determines all behavior of
light migration, including its spatial distribution, because dis-

F(s,sq,t) =EI

placement is an integration of velocity over time. The photon
distribution function /(r,s,t), for the initial source direction
sp and the source position ry=0, is given by

I(r,s,r)=<5[r—cf0’s(t’)dr’]5[s(t)—s]>, (5)

where the angle brackets denote the ensemble average in the
velocity space. The first & function insures that the displace-
ment, r—0, is given by the path integral. The second & func-
tion assures the correct final value of direction. Equation (5)
is a formally exact solution, but can not be evaluated di-
rectly. We, hence, make a Fourier transform for the first §
function in Eq. (5) and make a cumulant expansion to the
second order [12]. For an arbitrary random variable,

(eA) ~exp({A))exp({A 2)c/2), : 6)

where index ¢ denotes cumulant: (42),=(A%)—(A)(A). An
exact result is valid only if A is Gaussian. In the following
(B), is called the cumulant of B, while (B) is called the
moment of B. Substituting this approximation into the Fou-
rier transform of Eq. (5), we have

1
I(r,s,t)=F(s,sq,t) -(2—77)3—] dk

Xexp(ika(ra—c< J;:dt'sa(r')>)
1 ! t
—Ekakﬂc2{<fodt’jodt”T[s,,(t')sﬂ(t”)]>

{faarl{feoncl)} o

where T denotes time-ordered multiplication [13]. Integra-
tion over k in Eq. (7) directly leads to a Gaussian spatial
distribution displayed in Eq. (10) below. Using a standard
time-dependent Green’s function approach, the ensemble av-
erage of the cumulants in Eq. (7) can be calculated. The
components of the first cumulant, which is the average center
position of the distribution, conditioned on s=s; at =0 are
given by

i 1 t
<f0dt st )>=meodt f(ls F(s,s',t—1t")

XshF(s',s9.1"). (®)

The denominator appears because this is a conditional aver-
age. The components of the second moment. which is related
to the second cumulant (average half-width of spread) of the
distribution, conditioned on s=s; at t=0 are given by
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<fldt'j’dr"T[s,,(t')sﬂ(t")]>

0 0
— 1 f’dlf”d”fd!
_F(s,so,r) 0 ! 0 ! S

X f ds"F(s,s',t—1")s, F(s',s",t'—1")

, ©)

XspF(s",s9,")+(t.c.)

where (t.c.) means the second term is obtained by exchang-
ing the index a and @ in the first term. Equation (7) is the
only approximate formula used in our derivation. Formula
for calculating the first two moments, Egs. (8) and (9), are
exact. In Eqgs. (8) and (9), F(s;,s,,t) is given by Eq. (4).
Since Eq. (4) is exact, Egs. (8) and (9) provide the exact first
and second moments. Integrations in Egs. (8) and (9) are
tedious, but straightforward.

L. RESULTS

In the following, we set s, along the z direction and de-
note s as (6, ¢). Our cumulant approximation to the photon
distribution function is given by

F(S,So,t) 1
(@m7% (detB)2 P

I(r,s,t)= _%(B_l)nﬁ

X(r—r‘)a(r—rc)ﬁ}, (10)

with the center of the packet (the first cumulant), denoted by
r‘, located at

r§=62 AP ((cos O)[(1+ 1)f(g,—g14 1) Hf (81— 81— )],
(11a)

r=G2, APS(cos )(cos )
7

X[f(gi—gi-1)—f(g1—&1+1)], (11b)

where G =c exp(— u )/ F(s,s9,1).A;=(1/4m)exp(—git).g; is
defined after Eq. (4), and

S(g)=[exp(gr)—1]/g. (12)
ry is obtained by replacing cos ¢ in Eq. (11b) by sin ¢.
~ As an example, we derive Eq. (11a) as follows:

C 1
f‘z___ ! r X ',f“‘f, fF ,‘ . ’ .
r F(s.so,z)fodt jds F(s.s )s!F(s'.s9.1")

where F(s,.s;,t) is given by Eq. (4). We denote s
=[s5,,5,,5,]=[sin fcos ¢.sin fsin ¢.cos §]. The spherical
harmonics addition theorem is given by [14]
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Nl —m)!
Pis,-sy)= ; WP}""(cos 6,)pPim™
X(cos By )cos[ m(¢p;— ¢hy)], (13)

where 7o=1 and 7,,=2(m>0), P{")(cos 6) is the associ-
ated Legendre function. The recurrence relations of the
spherical harmonics is given by

1
cos §' P{™(cos 8')= =——[(I—=m+ 1) P{" (cos 8')

21+1
+(I+m)P{™ (cos 6')]. (14a)
. 1
sin 8" P{™(cos 6')= TS [Pi7T " (cos 0)
= P{" ¥ V(cos 6")]. (14b)

The orthogonality relation of the spherical harmonics is

1
f 1dcos 8" P{™(cos 0')Pff")(cos 8"

2 (I+m)!
2041 (I—m)t N

(15)

Using Egs. (13)—(15) and making integrations, first over ¢',
then over ', and last over ¢', Eq. (11a) is obtained. Using a
similar procedure, all results in this section were obtained.

The square of the average spread width (the second cu-
mulant) is determined by

Baﬂ=cGAaﬁ—rf,r2/2, (16)
with

W(i-1) (14 (l+l)(l+2)E(2)

A,.=2, AP(cos a)[
{

20-1 "1 201+3 !
12 (1+1)?
+21—_1-E§3) mE;“ . (17a)
1 (-1)
A‘m_,._‘,=2 ?A,PI(COS 9)[ - —zﬁE;”
N (U+1)(1+2) 2) (- I)E”)

2{+3 it 20—1 1

(I+1)({+2) | .
———-—-E§4’}t2 5 AP (cos 6)

20+3
Xcos(2¢) : EV+ : EX

o 21—171 T 2r+3 7!

! (3) ! (4)
I A TrE L (17b)

where (+) corresponds to A, and (—) corresponds to Ayys
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I 1
Ay=4,.= > 5A,P§2)(cos 0)sin(2¢){-—_—155”

I 21
! (2) ! (3) ! (4)
R TEE L T A TEE IS M
1 2(1-1)
Bo=8,= AP (cos 0)(cos )| = EI
: -

2(1+2) 1 1
(2) Ny g4
21+3 Ei +2£—1E’ +21+3E’ } (17d)

A, is obtained by replacing cos ¢ in Eq. (17d) by sin ¢. In
Egs. (17a)—(17d)

EV=(f(g,~81-2)~f(g1— &1~V (81-1—81-2):

(18a)
5}2)=U(81—81+2)”f(gl‘ét+l)]/(g!+1‘8/+2)»
(18b)
E®=[f(gi—g1-1)~ V(&= 81-1)> (18c)
EM=[f(g,—g1+1) 1181~ &1+1)- (18d)

A cumulant approximate expression for the pho-
ton density distribution is obtained from N(r,?t)
=(&[r—cfis(t')dt']), where an average over the angular
distribution is required. Using [dsF(s,s',t) =exp(—p,l), we
have a Gaussian shape

1 1 [ (z*Rz)z]
p

N = @D e dmDgyet 7| 4Dt
X - M exp(— tqt) (19)
XD\ T 4D, cr | VT M)

with a moving center located at
R,=c[1—exp(—gi)}/g: (20)

and the corresponding diffusion coefficients are given by

. [1—exp(—g11)]

D =S [ ! 3g1—8
““31\z g181-82)
iUl L
gz(gl—gz)[ p(—82
3 2
_E—z[l—exp(—glt)]~ , (212)
81
PP C{t+ 21— exp(—£11)]
l’,\'= \'\*:_" — ‘T'—‘_— —ex _
ST 3 g1 g1(81—82) P8
T g Tem el 21b
gz(gi'gg)[ exp( 8’2)]’ (21b)

In contrast to Eqgs. (11) and (17). thesc results are inde-
pendent of g, for />2. Figure 1 shows the moving center of
photons, R, [Eq. (20)]. and the diffusion coefficients, D ..
and D, [Eqs. (21)], as function of time, where g, are calcu-

R./l; 08
D_. /1, 0.6

D/t ™

T T

time 1/[{,/¢c)

FIG. 1. The moving center of photon density function R, {Eq.
(20)] and the diffusion coefficients D, and D, [Eqs. (21)], #s a
function of time .

lated by Mie theory [10] assuming (for this figure) water
droplets with /A =1 are uniformly distributed in air, with r
the radius of the droplet, A the wavelength of light, and the
index of refraction m=1.33.

Each distribution in Eq. (10) and Eq. (19) describes a
photon “‘cloud’ anisotropically spreading from a moving
center, with time-dependent diffusion coefficients. At early
time t—0, f(g)~t+0(t?) in Eq. (12), and E{’=¢/2
+0(¢#%) for j=1,2,3,4 in Egs. (18). From Egs. (11), Egs.
(17), and Egs. (20) and (21), we see that for the density
distribution, N(r,?), and the dominant distribution function,
that is I(r,s,t) along s=s,, the center moves as ct 5o and the
B,pin Eq. (16) are proportional to 13 at +—0. A distribution
function I(r,s,t) along s#sy is small since F(s,sq,8)~t
when r—0. Its center moves at a certain direction with dis-
placement proportional to ct, and the B,g in Eq. (16) are
proportional to 2 at t—0. These results present a clear pic-
ture of nearly ballistic motion at r—0. Roughly speaking,
this near ballistic motion maintains its speed up to R,
~0.6/, [see Eq. (20)]. This closely agrees with experimental
results of optical coherent tomography (OCT) [15] that the
range of good resolution extends to about 600 um, in a tissue
of 1,~1 mm. With increase of time, the motion of the center
slows down, and the diffusion coefficients increase from
zero. This stage of photon migration is often called a
“‘snakelike mode.”’

With further increase in time, the /th Legendre component’
in Egs. (4), (11), and (17), exponentially decay with a rate
related to g,. The detailed decay rate, g/, is determined by
the shape of the phase function. Generally speaking, the very
high Ith components decays in a rate of order of u,, as long
as its Legendre coefficient a; distinctly smaller than 2/+ 1.
Even in the case that the phase function has a very sharp
forward peak, in which there are nonzero a, for very high Ith
rank. the a, are, usually, much smaller than 2/+1. There-
fore, for the distribution function at time ¢ after the ballistic
stage is over. a truncation in the summation over [ is avail-
able.

At large times, the distribution function tends to become
isotropic. From Egs. (19)—(21), the photon density, at t
>1,/c and r>{,. tends towards the conventional diffusion
solution with the diffusive coefficient {,/3. Therefore, our
solution quantitatively describes how the photon migrates
from nearly ballistic motion to diffusive motion.
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IV. COMPARISON WITH AN EXACT SOLUTION
IN THE ISOTROPIC SCATTERING CASE

A check of our angular distribution, Eq. (4), the first mo-
ments, Eq. (11), and the second moments, Eq. (17), for a
special case of isotropic scattering is performed by compar-
ing with the exact solution given by Hauge {9] and agree-
ment is verified. Hauge has provided an exact solution for
isotropic scattering in the form of a Fourier transform in
space and Laplace transform in time, which is given by

lkg(s)EfO dte_{’f dre™®"I(r,s,1), (22)
with
© R L
Ik{(s)=-—_—{+p,+ik-cs —Wmn ——~'—§+Iu
1 1 S(s—sp)
(s—sp 23)

— + - .
><471' {tutik-csy (+uptik-csy

In order to compare, we set u,=0 and u,=u in this paper.
In the case of isotropic scattering, g¢=0, and g,=pu, !
=1,2,....

Equation (4) in the isotropic scattering case, reduces to

1
F(s,s9,t)= E[l —e Ml+e M S(s—sg). (24)

Its Laplace transform in time is given by

1 8(s—sp)
4o {({+u)  L+tp

If Eq. (23) is evaluated at k=0, that means integration of
I(r,s,t) over r, the result is the same as Eq. (25). Thus the
exactness of F(s,sy,t) is verified for the isotropic scattering
case.

The first moments, Eqs. (11), without normalization,
[without divided by F(s,sy,t)], for the isotropic scattering
case, reduce by our procedure to

L[F(s,5.0]= (25)

~

. [l+cos0
Z:C

| —e™ ™
yp= ( te M| +te M S(s—sy) .

(26a)

‘ ) L=
F;=csm¢9cos¢a # —te M. (26b)
These coordinates of the center have the Laplace transforms,
given by

. I+cos @ 7 S8(s—sp)
Arl=e| 0 4 ny (§+/~L)2J’ (27a)
. . i n
L{F.]=c(sin 0)(cos (ﬁ)ﬂm, (27b)

Since moments can be obtained by differentiation of charac-
teristic functions, we evaluate /3(— ik, ){Eq.(23)} =0
that means integration over space of r, with {(r.s,r) as
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weight. The results are same as Eqs. (27). Thus, by a slight
extension of Hauge’s results we verify the exactness of our
first moment in the isotropic scattering case.

For a check of the second moment, we notice that Egs.
(18) are obtained from

: .
f dt'cxp(at’)j’ dt" exp(bt")
0 0

_ (Ut =) /(a+b)— (e~ 1)/a),
“(Wa)[(e“"-1)a~t], a=—b.

(28)

In the isotropic scattering case, the limit as a—0, or b—0, or
both is needed.

Equation (17a), without normalization, in the isotropic
scattering case reduce to

cos? 6+ cos 6

1 t 12
5;:62 ypm [P—e ’“——e""—}

1
M o~

u? M 2
C2 ! —;ut —utg2 th -t
+121r ;~e ——e Htt+c e M S(s—syp).

(29)

This moment based on our method has a Laplace transform,
given by

cos? f+cos  pu c? w3l

AC 71— .2 —_—
A=t T2 Tt )
2
C
+m5(s~so). (30)

The corresponding result from Hauge’s solution are obtained
by (1/2)82/0(—ikz)ﬁ(—ikz){Eq.(23)}|k=0, which implies
integration of (r,r,)/2 with I(r,s,t) as weight over space.
The same result as Eq. (30) is obtained. The similar proofs
have been performed for A¢_, A€ A:,, 5;2, and Eiy,

xx? 4
verifying the exactness of our seconyé moments. In evaluation
of the wvalue and the derivatives of B={l
—(u/|klc)tan™'[[Kk|c/(L+p)]} " at k=0, we have B=({
+u)l, Ba=0, Bag=2uc’[3{%({+p)], and B,z=0 if
a#f.

In the above equations the term related to e ~#/§(s—s,),
has cumulants r;=ct and 24 _,~(r$)?=0. This spike repre-
sents the unscattered part of the light, which reduces its in-
tensity as exp(—ur). The scattered part of light along the
directions of s#s, has the correct mean positions and
spreads, as has been proved.

V. DISCUSSION

The decoupling of harmonics is valid only for the angular
distribution. F(s.sy.r). because in Eq. (3) the term such as
cs-V I(r,s.t) in Eq. (1) disappears. This result is available
only for an infinitc uniform medium. otherwise Eq. (3) can-
not be derived from Eq. (1). When the spatial related distri-
bution, /(r,s.f). is calculated, the coupling of the different
harmonics remains, and is presented in Eqs. (8) and (9),
through the recurrence relation of harmonics, Eq. (14), and

[
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explicitly shown in Egs. (11) and (17), the results of the first
two moments. Contrasting with the usual approach using an-
gular moment expansion of Eq. (1), our cumulant approach
has two remarkable features: (a) since the formula for calcu-
lating cumulants, Egs. (8) and (9) (and possible extension to
higher order cumulants), use the standard Green’s function
approach without making approximation and the Green'’s
function, Eq. (4), is exact, the obtained cumulants, as far as
the nth order concern, are exact. (b) The cumulants obtained
appear as the arguments of the exponential functions in Eq.
(7), that implies that an infinite series in the usual angular
moment expansion has been included. Therefore, even
though only derived by terminating at the second order cu-
mulant, the distribution function obtained has the exact cen-
tral position and the exact half-width as functions of time,
and thus leads to the correct ballistic limit at t—0 and cor-
rect diffusive limit at large . This result is not achieved for a
general phase function in any known publication.

The cumulant expansion terminating at the second order
is a standard method in statistics [12], which neglects all
cumulants higher than second order, and leads to a Gaussian
distribution. If we examine the spatial displacement after
each collision event as an independent random variable, Ar;,
the total displacement is SAr(i=1,...,N). The central
limit theorem claims that if N is a large number, then the sum
of N variables will have an essentially Gaussian distribution.
Therefore, after enough collision events happened, the distri-
butions we calculated become accurate in detail, not just
having the correct center and spread. At early time, the pho-
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ton spread is narrow, hence, in many applications the de-
tailed shape is less important than the correct position and
correct narrow width of the beam.

In case a more accurate distribution at early time is
needed. the exact higher (than second) order cumulants can
be analytically calculated, and Eq. (7) can be extended to
higher order. Analytical expressions for exact spatial cumu-
lants up to an arbitrary nth high order have been derived, and
will be presented elsewhere [16]). However, a closed analyti-
cal form in space is unlikely to result, and a numerical Fou-
rier transform over k would be required. We have therefore
terminated the current calculation at second order in this pa-
per.

In summary, we have derived an analytical solution of the
distribution function, Eq. (10), and the density distribution,
Eq. (19), for the elastic Boltzmann transport equation in an
infinite uniform medium. This solution is quantitatively ac-
curate up to the second order cumulant approximation and
shows a clear picture of time evolution of particle migration
from ballistic to snakelike, then to the diffusion regime. The
first two position cumulants at any angle and the angular
distribution are completely exact as functions of time.
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1. Introduction

Research on near-infrared (NIR) diffusive light for biomedical imaging and diagnosis has advanced
over the past decade because of its potential to be a safe, non-invasive, affordable and superior
diagnostics.!™ To seek a methodology which provides fast data acquisition and reconstruction to
perform imaging with high resolution in real time, a variety of techniques have been explored includ-
ing time resolved picosecond pulses, continuous waves, and diffuse photon density waves (DPDW).
Most methods reconstruct three-dimensional optical property maps (OPM) by a matrix inversion
or iterative techniques, or by three-dimensional rendering of two dimensional projection images.*8
The difficulty of inverting the whole three-dimensional map at once is usually time prohibitive when
the number of volume elements involved increases, while three-dimensional rendering of two dimen-
sional projection images needs extra depth information of inhomogeneities inside turbid media to
behave well and has other limitations.”®

In this article, we introduce the theory of propagation of the spatial Fourier component of
the scattered wave field inside the turbid medium, and then develop a new optical diffuse imaging
methodology based on this theory, using the two-dimensional Fourier transform of photon inten-
sity on a plane to detect inhomogeneities in a highly scattering turbid medium when illuminated
by a picosecond (near) plane wave pulse. In such a spatial Fourier space, the picture of photon
migration is much simplified, in the sense that different spatial frequency components of the OPM
(2D Fourier transform on the zy plane) are decoupled from each other and only depend on the
corresponding spatial frequency component of the photon intensity on the detector plane. Based
on this observation, we obtain a super-fast reconstruction of 3D OPM by matrix inversions of each
spatial component independently. The effect of noise is explicitly handled by controlling the set

of spatial frequency components and the regularization parameters used in the matrix inversion.

After a rigorous account of the theory and a brief description of the algorithm, an example of




reconstruction of four inhomogeneities located up to 2cm below the surface of a human tissue like

semi-infinite turbid medium using backscattered photons is presented at the end.

2. Theory

The photon density ¢(r,t) at position r and time ¢ in a highly scattering turbid medium can be

described by the diffusion equation

2 g(r,1) ~ eV - DEIVp(r, 1)+ enal®)(r,1) = S(r,1) 1)

The absorption coefficient u,, and the diffusion coefficient D = 1/3u} where p§ is the reduced
séattering coefficient, may depend on the position in the medium. ¢ is the speed of light inside the
medium, and S is the source term describing the density of photons generated per second.

For the case of a uniform medium and an incident source S(r,t) (S = 0 when t < 0), the
incident wave field is ¢;(r,t) = [d°r' [f dt'S(r',¢')G(x,r',t — t') where G(r,r’,1) is the Green’s
function for the diffusion equation in a uniform turbid medium. When some weak inhomogeneities

(objects such as tumors) are embedded in the medium, we write:

Paobj(r) = fia 4 Opta(r)

Boobi(t) = g + Spis(r) (2)

where 11, and p; are the constant absorption and the reduced scattering coefficients of the otherwise
homogeneous medium, fq obj(r) and /,L;’Obj(r) are the absorption and the reduced scattering coef-
ficients of the embedded inhomogeneity which are spatially dependent. Plug Eq. (2) into Eq. (1),
and note the diffusion parameter of the inhomogeneity Dob;(r) = D+38D(r) = 1/3p} — 6p'(r) /32,

we have

0

5;9(0:t) = DeV2(r,1) + pacd(r,1) = S(r, ) + ¢V - SD(X)V(r, ) — cdpa(r)(r,1)  (3)




The complete right-hand side of Eq. (3) now acts as the source term, of which, S(r,t) contributes

to the unperturbed wave field ¢y = ¢;(r,t), and the rest contributes to the scattered wave field,

¢s(r)t) = ¢(r’t) _¢0(rat)
- / & / G x ) (cV - SD(X) Vi (' ') — cpia(r)S(r', )
0

i
— / ! / &G, vt — )Spa(r)cp(r', )

+ / &' / dt’ ‘5“3(‘" “VuG(r,r' t — 1) Vug(t',t) (4)

after partial integration.

To the first order in the variation of optical absorption and reduced scattering coefficients, we
can just replace ¢(r',t') in Eq. (4) by ¢, i.e., the total wave field is a superposition of the incident
wave field ¢; and the singly scattered wave field ¢s. This is the well-known Born approximation.

Now consider the configuration of mostly studied parallel planar geometry with its boundaries

at z =0 and z = d. Its Green function is thus!®

_ A2
exp(_u — pact)Gy(2,7',1), (t>0) (5)

G(r,r',t) = Dot

47 Dct

where p = (z,y), p' = (2',y'), and G,(z,2',t) can be easily obtained by an image method. Its two

dimensional Fourier transform on p,

G(q’ 2, PI’ zla t) = /d2pG(p, 2, pl-) Zla t) eXp(_iq ) p)
= exp(—iq ' p’ - Dth2 - MaCt)GZ(Z, zla t)
= é(q’ 2, Z’, t’) exp(——z'q . pl) (6)

For simplicity, let’s restrict ourselves to the case of a pure absorptive perturbation (du, # 0

and éu, = 0) and of an incident pulse S(r,t) = S(p)d(z — z,)d(t) at this moment. The scattered




wave field on a plane 0 < z < d is thus
s(p, 2, 1) /d3 '/d2 "/ dt'G(r,r',t — t)opua(r')eS(0")G (Y, p", 25, 1'). (7

from Eq. (4) after replacing ¢ by ¢;. Inside Eq. (7), expand the source term S(p"), and Green

functions G(r,r',t — t') and G(r', p", 2, t') into integrals of their Fourier components, we find:

t )
bs(p,2,t) = ~—ﬁ/d’zp’/d2’/d2p”/ dt’/dzqG(q,z,Z',t —t')exp(iq- (0 — "))
/4 0

X8 (p', 2')c / d’q"S(q") exp(iq” - p") / d?q'G(d, ', z5,t') exp(iq - (o' - p"))

= 4 T /dzq/d2 ’/d2 "/ at /dz exp(iq- p)G(q, 2,2, t — )S(q")G(d, ', s, t')
X / d*p'dpa(p’, ') exp(—ip' - (@ - q)) / d*p" exp(ip” - (q" — d))

= /d2 /d2 ’/ dt’ /dz exp(iq - p)G(a, 2,7t — t')djia(a — o', 2')

xS (q’)G(q’, 7, 25,t) (8)

where S’(q, 2s), 6f04(q, z) are two-dimensional Fourier transforms of the source on the z = z, plane,
and of the perturbation of absorption coefficient over the z = z plane, respectively. And at last, we
recognize the two dimensional Fourier transform of the scattered wave field ¢5(p, 2, t) on a plane z

for the case of a pure absorptive perturbation
R C . ~ t ~ N
br(ant) = — 1 [ @A iala— o, )5 2) [ dtClaz =)0 2z t)  (9)

In a similar fashion, for the case of a pure scattering perturbation (6u, = 0 and du); # 0), the

two-dimensional Fourier transform of the scattered wave field is:

- c N .
blant) = g | CddLei(a—d,2)8d,2)
S

t ~ ~
x [ dtfar dGlaz - )G 720 )
0

L 90(a,2, 7,1 = 1) 06(d, 7, 20,1
0z oz

} (10)




The general Fourier scattered wave field is the sum of Eq. (9) and Eq. (10). Denote the

convolutions

t . A
'wa(q, Q’, z,t; zl) = / dt’G((LZ, Z’,t - ti)G(qla Zla Zsy t,)

Y
/d,aG q,zz t t)@G(qazZ ,Zsy 1) (11)

ws(q,q’,2,4;2") =

which are the weight functions involved in the propagation of spatial Fourier components of the

scattered wave field, we have

% c . .
¢s(q,2,t) = 02 / d’q'd7'fie(q — d',2')S(d, z5)wa(q, 4’ 2, t; 2')

+127r2 ,z/dQQ'dz Spy(a—d,2)5(d, 2)

x{q-q'wa(q,d’, 2,4 2') + ws(q,d', 2,t; ')} (12)
A. Incident plane wave

For the simple case when the incident wave is a plane wave pulse, i.e., S(r,t) = §0(z — z;)6(t), such

that S(q, z5) = 4n286(q), Eq, (12) simplifies to:

dula) = ~Sc [ @ (e (e, 0562) - LBy q 02650} (1)

s
The most salient feature of the above result is that different spatial frequency components of di,
and 7, are decoupled from each other and the g-component of the optical parameters depends
only on the the corresponding spatial frequency component of the scattered wave field. Thus the
dimension of the inverse problem to be solved later is greatly reduced, as is the computation time.

Let’s approximate the integration over 2’ by a summation, and fix z = z4 at the detection

plane (omit z hereafter), the Fourier scattered wave field on the detection plane

N N

. . dp'(q, z;

Bo(a,1) = Seirz S [-67ia(a, zj)wa(a, 0,4 27) + %‘y—)wsm, 0,4;2)] (14)
j=1 s




where Az is the discretized step size, N is the total number of slices (layers) in the z direction
between the source plane and detection plane, and z; is the z-coordinate of the central position of
layer j.
Set q = 0 in Eq. (14),
N .
575(0, 25)

033(0, t) = ScAz Z[—éﬂa(o, 2j)wa (0,0, 2;) + e
j=1

ws(0,0,t; 25)], (15)

the zero spatial frequency components 81, (0, z;) and 642;(0, z;) can be readily solved without doing
a complete reconstruction. Due to the nature of Fourier transform, they just provide the profile of
the amount of total perturbation of absorption and reduced scattering coefficients per slice, i.e.,
the depth profile of the inhomogeneities.

The whole three-dimensional absorption and reduced scattering coefficients map is thus con-
structed through an inverse Fourier transform from all the g-components of di, and di; at different
depths, each of which is solved independently from a series of time resolved scattered wave field 435
by Eq. (14). A schematic diagram of the procedure of inversion is shown in Fig. (1). The maximum
spatial frequency (cutoff frequency) of the components used in the inversion is determined through

a signal-noise-ratio analysis and the regularization parameter in the matrix inversion is obtained

by the robust L-curve method.!!

Both transmission and/or backscattering image reconstruction configurations can easily be
made using Egs. (13) and (14).
B. Near plane wave

When the incident wave is not a perfect plane wave but nearly plane, we write S(r,t) = (S +

AS(p))d(z — z5)6(t) where S is the mean value of S(r,t) on the z = 2, plane, and

S(q,25) = 47*5(8(q) + f(@)) (16)




where f(q) < 1 and f(0) = 0. Regard 472Sf(q) as a perturbation to 50 = 47x284(q), producing

extra deviations in 0/, and 4} such that

Siala,z) = 0a0(a,2) +ealq, 2)
6is(q,2) = 0i9(q,2) +es(a,2) (17)

where 6/1&0) (aq,2) and 5,1&") (q, 2) are the solution of Eq. (13) with the same scattered wave field on

the detection plane z = 2,4 for a perfect plane wave source S©), Plug Egs. (17) into Eq. (12), after

rearranging the terms and retaining only up to the first order of perturbation f(q), we get:

6b(q7 Z’)
3p

ws(q,0,2,t;2')}

_q¢M@m—d%h

3

~Se [ d/{eala, #wala 0,2 8:2') -

= S [ dqdd' f(a)wala a2t )P (@ -, 2)
-Se [ d*dd (@ ywsla o2, 2)60 (@ — o, 7) (18)

Please note, the left hand side of Eq. (18) is of the same form of the right hand side of Eq. (13),
and its right hand side is a function of known variables and can be readily calculated. So €4(q, 2'),

ep(q, ') can then be solved in a similar way as in sec. (2A).

3. Simulation

For demonstration purposes, consider a semi-infinite turbid medium (z < 0) with its surface at
z = 0 [Fig. (2)], whose absorption coefficient p, = 0.0033mm™! and reduced scattering coefficient
gt =1.0mm™L.

Four absorbing objects A, B, C and D, each 6.25mm X 6.25mm X 3mm and with absorption
coefficient p14 obj = 0.02mm ™! and reduced scattering coefficient equal to that of the background, are
placed at depth 7.5mm, 7.5mm, 19.5mm and 19.5mm below the surface, and their zy coordinates are
(—25,-18.75)mm, (—12.5,—3.1)mm, (9.4,15.6)mm and (9.4,6.25)mm, respectively. The medium

is illuminated by an incident Gaussian pulse of a shape of exp(—p?/20?) with o = 50mm inside an




aperture of radius 50mm, propagating along negative z-axis at time ¢ = 0.

These parameters are potentially applicable to optical mammography of the compressed-breast-
toward-chest using backscattered photons. A series of measurements (total 15 snapshots from 300ps
to 2400ps) of an area 100mm x 100mm on the surface plane z = 0 are computed by using the direct
calculation for the Gaussian pulse in r space. The simulated data are used as input for inversion
after adding a 1%, 5% or 10% Gaussian noise.

In the reconstruction part, the near-surface region of the turbid medium of depth up to 3cm
is sliced into N = 10 layers, i.e., Az = 0.3cm, and objects A and B are then located on layer 3, C
and D on layer 7. The detection plane of an area of 10 x 10cm? is divided uniformly into a 32 x 32
grid. Objects A, B, C and D all take 2 x 2 elements by this grid. The results of reconstruction are

shown below.

A. Depth profile

The absorption depth profile, i.e. the total absorption perturbation per layer [ d?pdpa(p,z) vs
depth z is shown in Fig. (3) with different noise levels for cases (a) 1% noise, (b) 5% noise and (c)
10% noise. In (a), there are one peak at depth z = 0.75cm (layer 3) where objects A and B are
embedded, and another peak at z = 1.95cm (layer 7) where objects C and D are embedded. The
width of the first peak at half height is 0.34cm, about the thickness of one layer (0.3cm), which
means the depth of objects A and B is resolved very well. The second peak of objects C and D
spans two and a half layers with its width of peak at half height 0.74cm, but its peak position is
still correct.

When the level of noise increases, the peak values of both peaks decreases, and the half width
increases. The effect on the second peak at z = 1.95cm is much more significant than that on the

first one at z = 0.75cm.




B. Layer reconstruction

The full 3D OPM is reconstructed. The reconstructed absorption coefficient of the layers at the
two peak positions are shown in Fig (4), Fig. (5) and Fig. (6) for the three noise levels respectively.
Fig. (4) shows objects A and B are clearly resolved as two objects centered at their original positions
with negligible expansion; and objects C and D at depth z = 1.95cm are also detected at the correct
central positions, but the resolved images are expanded on the zy plane. With the increase of noise
level, the shape of objects A and B blurs from Figs. (4a) to (5a) and (6a), and the blur is even
worse for objects C and D under the same condition (from Figs. (4b) to (5b) and (6b)).

The reconstructed absorption parameter for objects A and B is 0.0071mm™! at noise level 1%,
about 36% of the original value 0.02mm™! of the absorptive inhomogeneity. In other words, the
objects appears larger in space with a weakened absorption parameter. As the noise level increases,

the effect is accentuated with a further reduction in the resolved absorption parameter.

4. Discussion

In the inversion part of the reconstruction, we have approximated the Gaussian wave by a simple
plane wave. A refined solution could be obtained as discussed in sec. (2B). But it is not worth the
effort, as our calculation shows the correction is less than 1% at layer 2.

The image reconstruction method provided is fast. The time it takes to perform an inversion
in the above example (of 32 x 32 x 10 volume elements) is less than half a minute using a scripting
language Python on one 180Mhz CPU of Origin 200 computer from Silicon Graphic Inc. This
algorithm scales only linearly with the number of elements in the zy grid, so it can be used to
handle larger data sets in real time with little difficulty.

This approach does not limit the number or the thickness of the inhomogeneities. It allows

multiple inhomogeneities and one inhomogeneity may span several layers.
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With little effort, a depth profile (the sum of the perturbation of optical parameter vs depth)
of the inhomogeneities inside a highly scattering turbid medium can be obtained. This information
may be very useful in some cases. When the inhomogeneity is found to exist only in one layer from
the depth profile, the summation in Eq. (14) no longer exists. A direct inverse Fourier transform can

thus be used to resolve the inhomogeneity when it is a sole absorptive or scattering perturbation.
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